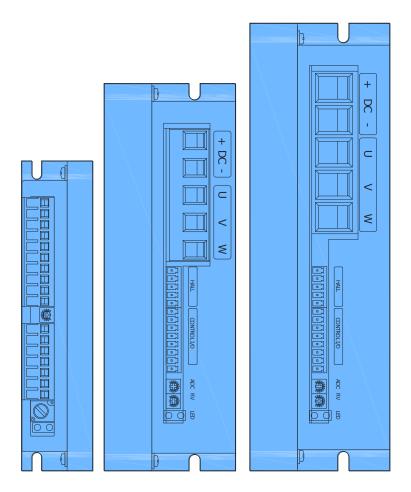
BLD-15A / BLD-50A / BLD100A User manual

Brushless Direct Current (BLDC)

Brushless dc motor controller

Single channel multiple control modes


Hall square wave control,

RS-485 communication design

APP application Software CloudView

Meet the requirements of national standards

- * Please install, connect and debug the equipment with industry technicians
- * It is not allowed to install, remove or replace the circuit of the equipment when it is live
- ** Be sure to install necessary protective devices between the power input and the power supply (battery) to avoid dangerous accidents or fatal injuries
- * Need to install: overcurrent protector, insurance, emergency switch
- X Please do the isolation and insulation protection between the product and the ground and equipment
- * If there is a real need for live debugging of this product, please choose a non-metallic well insulated screwdriver or special debugging tool
- * This product shall be installed in a well-ventilated environment
- X This product can not be directly used in high humidity, dust, corrosive gas, strong vibration of the abnormal environment

Brushless dc motor, Abbreviation:BLDC

Brushless dc motor (BLDC) is an abbreviation of the Brushless Direct Current. The function of

the control system corresponding to this motor is to control the precise operation of the motor throughsoftware algorithm. .

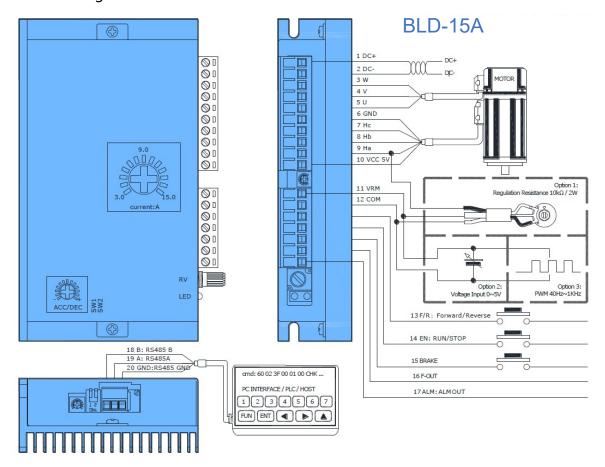
Series B is a single channel low voltage motor controller with display.

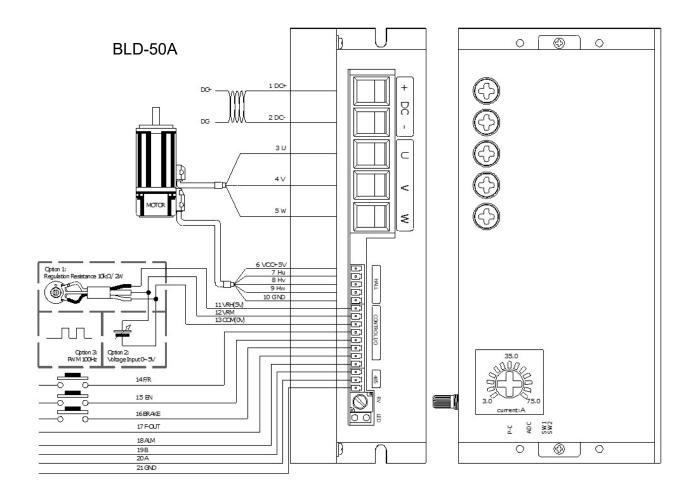
The design is based on automotive ARM 32-bit MCU.It can also adapt to brushless motor control based on hall sensor,magnethic coding sensor and photoelectric coding sensor.

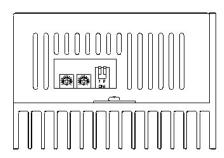
The hall sensor motor can be controlled by square wave or positive wave algorithm.

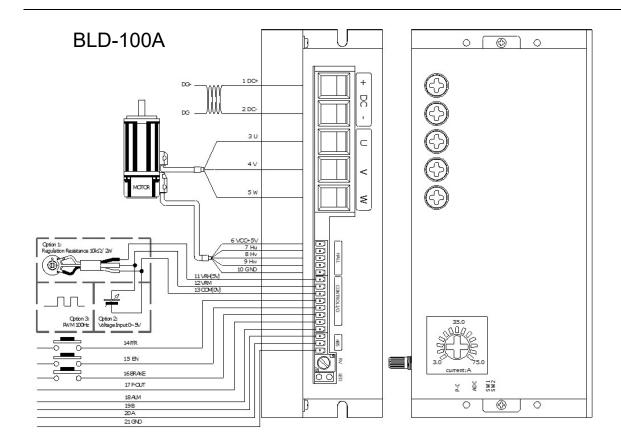
For magnethic hall sensor or optical sensor motor,FOC positive algorithm can be used to achieve low speed,high torque and precise positioning control.Can realized different mode control,PWM open loop,speed closed loop,position loop,torque mode...Custom patten control can be implemented with algorithm.

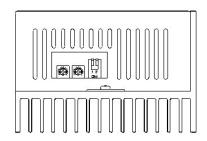
The controller is equipped with a variety of communication interfaces, and the upper computer can


realize various working purposes of the system through communication protocol instructions


The controller is equipped with the basic control interface, and the upper computer can realize the main functions of the whole system.


The controller has the related failure light indication and special control port output


The controller is equipped with human-machine interface, through which users can set the parameters of the controller .


1.Electrical Diagram

SN	PIN	Function	Color	Note
1	DC+	Power supply positive		
2	DC-	Power supply negative		
3	U	Motor U		
4	V	Motor V	3	
5	W	Motor W		
6	VCC+12V	Hall power supply positive	60 38	
7	Hu	Hall phase a		
8	Hv	Hall phase b	*	
9	Hw	Hall phase c		

10	GND	Hall power supply negative GND	
11	VRH(5V)	Voltage resistance power supply	
12	VRM	Voltage resistance modulation input	
13	COM (0V)	GND for control input	
14	R/F	Direction control input	
15	EN	Motor run/stop control input	
16	BRAKE	Motor inner brake control input	
17	F-OUT	Speed output(PP*3 cycles per round, 50% duty cycle signal)	
18	ALM	Alarm output	
19	В	RS-485 B	
20	Α	RS-485 A	
21	GND	RS-485	

1. Characteristics

- Smart multi PID control, PID gains for speed changeable by ACC/DEC
- Control mode: Open loop, Speed closed loop. SW1 ON—Speed closed loop, SW1 OFF—Open loop
- Polar pairs selection: SW2 ON—4 polar pairs, SW2 OFF—2 polar pairs
- Speed/Torque modes: inner RV, external 0~5V input, Pulse Width Modulation input
- Direction control: Forward, Backward
- Run/Stop control input
- Digital signal output: Alarm output, external control relay output
- Work current control: maximum current limited, overcurrent protection. Maximum work current defined by P-SV
- Protection: over-bus voltage, low-bus voltage, hall sensor signal error, short-cut error
- LED status indicator
- RS-485 communication

2. Parameters

Power supply range: DC 12~60 V

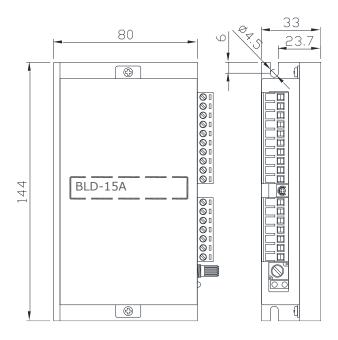
• Work current range: BLD-15A: 15A; BLD-50A:35A; BLD-100A:65A;

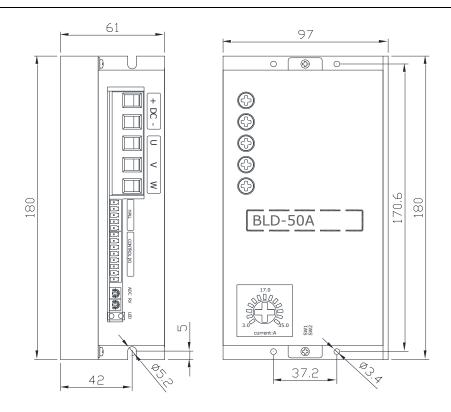
Minimum RPM: 500 RPM (hall sensor motor)

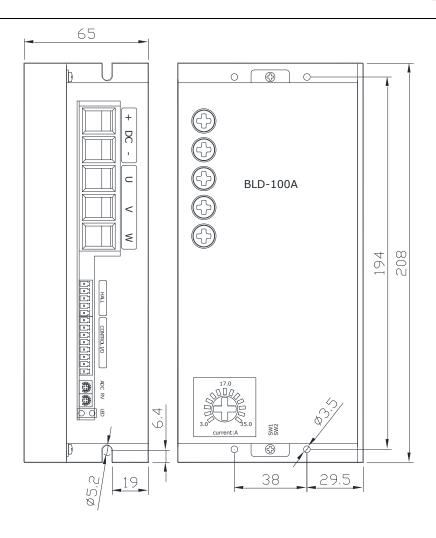
• 5 V DC Power ouptut: 20 mA ability

VRM Input: 0~5 V DCPWM Input: 4Hz~10KHz

....


Work temperature: -20~+70℃


Work Humidity: ≤80 RH


• Size: See installation drawings

• Weight: BLD-15A—320g, BLD-50A—850g, BLD-100A—1050g

3. Installation

Note:

Multiple controllers are installed at the same time. Please keep the controller > 20mm interval.

Keep the controller away from dust, high humidity environment and avoid accidental contact. Keep enough space around the controller for ventilation and adjustment.

Keep the controller away from heat sources. Ensures that the controller operates within the specified ambient temperature range

Avoid installing on equipment that vibrates excessively. If installation is required, take good anti-vibration measures.

4. Electrical Connection

- Donot work with live wires.
- ② Select insulated leat that matches the voltage and current of the controller, please follow the following table to selest the specification of the cotroller power input line and motor connection line.

on

IXD Interface Name

	1	Power input	50 A,6 mm²Cross-sectional area,The wire Max longer15 m
2	2	Motor phase line	50 A,6 mm²Cross-sectional area,The wire Max longer15 m

- ④ In any case, signal lines、logic control line should not be bundled and mixed with the power supply line.output line(motor line)wiring, So that the induced voltage will cause interference to the controller, wrong action or direct damago to the controller.
- ⑤ There is no power reverse protection function inside the Controller, Please must keep that the controller power input is consistent with the positive and negative poles of the external power supply, otherwise the controller will be damaged.

5. Output Electrical Diagram

Output is NPN:

6. Definition

6.1 Indicator

LED	Definition	Description
Green	POWER	Keep after power up
		1: Stall
		2: Overcurrent
		3: Hall sensor error
		4: Low voltage
Red	Error	5: Over bus voltage
		6: MOS Error
		7: Current sample base Error
		8: Over load
		9: Over speed

6.2 Settings

PR** parameter list:

SN	Description	Range	Unit	Default Value	Notes
PR00	ID	1-255	/	1	
PR01	Polar pairs	1~10	/ P	4	
PR02	Overcurrent	1~30	A	30	
PR03	Limited current	1~17	A	17	
PR04	Maximum PWM duty cycle	10-99	%	99	
PR05	Control modes	0-9	/	2	Mode 0: 485 speed closed loop Mode 1: VRM speed closed loop Mode 2: VRM open loop Mode 3: 485 fixed PWM Mode 4, reserved Mode 6: External open loop Mode 7: External speed closed loop Mode 8: External Pulse Width Modulation open loop Mode 9: External Pulse Width Modulation closed loop
PR06	Inner maximum speed	100-8000	rpm	3000	Mode 1
PR07	Maximum PWM dutycycle for open loop	100~990	0.10%	500	Fixed PWM output
PR08	Input signal direction	0-1	/	0	0normal, 1reversed
PR09	Overspeed RPM	100-9999	rpm	3500	
PR10	Overspeed period for	0-9999	mS	0	Disable alarm if 0

	Alarm				
PR11	PID gains ACC	10-100	rpm/mS	60	
PR12	PID gains DEC	10-100	rpm/mS	60	
PR15	Overload period for Alarm	10-9999	mS	3000	
PR16	Inner brake start RPM	1-1000	rpm	100	
PR17	Motor stop style	0-1	/	0	0: free stop 1: BRAKE after stop
PR34	485 RUN/STOP	0-1	/	0	0: STOP 1: RUN
PR35	485 F/R	0-1	/	0	0: CW 1: CCW
PR36	485 Brake	0-1	/	0	0: Release brake 1: Brake
PR37	Control command source Sel	0-1	/	0	0: IO 1: 485 command

7. MODBUS Communication

7.1 settings

Para.	Value
Slave ID maximum	16
Baudrate	9600bps
Transfer Style	half-duplex
Protocol	ModBus RTU
Data	8
STOP	1
Checksum bit	None
CRC	ModBus CRC16
Length	8字节

7.2 Protocol system

Name	ID	W/R	Para Add	Data	CRC
------	----	-----	----------	------	-----

byte(s) 1		1 2		2	2
Drief	Device	0x05:Read	PR** No.	Value Modbi	
Brief	ID	0x06:Write	5:Write HEX Vlaue Vaid		CRC16
Carrala	0x01	0x06	0x00 0x25	0x00 0x01	0x59 0xC1
Sample	Set the device control command source as 485 by PR37				

7.3 Special instructions

There are two ways to control the operation of the controller, through the controller interface control; Through RS-485 communication control.

Through the control interface control, only through the display to set the required parameters and through the hard wire to control the whole system.

Through RS-485 communication port control, the control instruction source of the system needs to be set as MODBUS instruction of 485 communication according to the following steps, Note that the interface of the controller does not work at this time, if the user needs to re-use interface control, It is also required to set the instruction source as IO port through MODBUS instruction

Form 1 RS-485 Switching steps

Steps	Instruction			
1	Set PR05 control mode to 0 from the monitor			
2	Send the instruction through RS-485 and set PR37 to 1, and set the instruction			
2	source to 485 instruction (HEX data) 01 06 00 25 00 01 59 C1			
	Control (HEX data) with the following command:			
	Start motor PR34: 01 06 00 22 00 01 E8 00			
3	Change speed PR06: 01 06 00 06 0B B8 6E 89			
	Change veer PR35: 01 06 00 23 00 01 B9 C0			
	Stop motor PR34: 01 06 00 22 00 00 29 C0			

8. Cloud point

CloudView V1.01

CloudView V1.01 is an APP for controller parameter setting and monitoring. Users can apply the visual operation controller through this, APP. The APP is connected to the controller through ModBus.

Other

Version of the record

Form 1 Record

SN	Content before modificatio	ontent after modification	Revision of previous	veMrsoiodnif ied version	Reviser	Date	Remark
1			V1.0		Α		NEW
2							